Fully Robust Tree-Diffie-Hellman Group Key Exchange
نویسندگان
چکیده
We extend the well-known Tree-Diffie-Hellman technique used for the design of group key exchange (GKE) protocols with robustness, i.e. with resistance to faults resulting from possible system crashes, network failures, and misbehavior of the protocol participants. We propose a fully robust GKE protocol using the novel tree replication technique: our basic protocol version ensures security against outsider adversaries whereas its extension addresses optional insider security. Both protocols are proven secure assuming stronger adversaries gaining access to the internal states of participants. Our security model for robust GKE protocols can be seen as a step towards unification of some earlier security models in this area.
منابع مشابه
Diffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملA NEW PROTOCOL MODEL FOR VERIFICATION OF PAYMENT ORDER INFORMATION INTEGRITY IN ONLINE E-PAYMENT SYSTEM USING ELLIPTIC CURVE DIFFIE-HELLMAN KEY AGREEMENT PROTOCOL
Two parties that conduct a business transaction through the internet do not see each other personally nor do they exchange any document neither any money hand-to-hand currency. Electronic payment is a way by which the two parties transfer the money through the internet. Therefore integrity of payment and order information of online purchase is an important concern. With online purchase the cust...
متن کاملEfficient group Diffie-Hellman key agreement protocols
In a group Diffie–Hellman (GDH) key agreement protocol, all group members collaboratively establish a group key. Most GDH key agreement protocols took natural generalization of the original Diffie–Hellman (DH) key agreement protocol to arrange all group members in a logic ring or a binary tree and to exchange DH public keys. The computational cost and the communication rounds are the two most i...
متن کاملConstant Round Group Key Exchange with Logarithmic Computational Complexity
Protocols for group key exchange (GKE) are cryptographic algorithms that describe how a group of parties communicating over a public network can come up with a common secret key. Due to their critical role in building secure multicast channels, a number of GKE protocols have been proposed over the years in a variety of settings. However despite many impressive achievements, it still remains a c...
متن کاملComputationally sound symbolic security reduction analysis of the group key exchange protocols using bilinear pairings
Canetti and Herzog have proposed a universally composable symbolic analysis (UCSA) of mutual authentication and key exchange protocols within universally composable security framework. It is fully automated and computationally sound symbolic analysis. Furthermore, Canetti and Gajek have analyzed Diffie-Hellman based key exchange protocols as an extension of their work. It deals with forward sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009